eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
↳ QTRS
↳ Overlay + Local Confluence
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
MIN(cons(N, cons(M, L))) → LE(N, M)
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)
REPLACE(N, M, cons(K, L)) → EQ(N, K)
REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))
SELSORT(cons(N, L)) → EQ(N, min(cons(N, L)))
EQ(s(X), s(Y)) → EQ(X, Y)
SELSORT(cons(N, L)) → MIN(cons(N, L))
IFSELSORT(false, cons(N, L)) → REPLACE(min(cons(N, L)), N, L)
LE(s(X), s(Y)) → LE(X, Y)
IFSELSORT(true, cons(N, L)) → SELSORT(L)
MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
IFSELSORT(false, cons(N, L)) → MIN(cons(N, L))
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
MIN(cons(N, cons(M, L))) → LE(N, M)
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)
REPLACE(N, M, cons(K, L)) → EQ(N, K)
REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))
SELSORT(cons(N, L)) → EQ(N, min(cons(N, L)))
EQ(s(X), s(Y)) → EQ(X, Y)
SELSORT(cons(N, L)) → MIN(cons(N, L))
IFSELSORT(false, cons(N, L)) → REPLACE(min(cons(N, L)), N, L)
LE(s(X), s(Y)) → LE(X, Y)
IFSELSORT(true, cons(N, L)) → SELSORT(L)
MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
IFSELSORT(false, cons(N, L)) → MIN(cons(N, L))
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
MIN(cons(N, cons(M, L))) → LE(N, M)
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
REPLACE(N, M, cons(K, L)) → EQ(N, K)
REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))
SELSORT(cons(N, L)) → EQ(N, min(cons(N, L)))
EQ(s(X), s(Y)) → EQ(X, Y)
SELSORT(cons(N, L)) → MIN(cons(N, L))
LE(s(X), s(Y)) → LE(X, Y)
IFSELSORT(false, cons(N, L)) → REPLACE(min(cons(N, L)), N, L)
IFSELSORT(true, cons(N, L)) → SELSORT(L)
MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
IFSELSORT(false, cons(N, L)) → MIN(cons(N, L))
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LE(s(X), s(Y)) → LE(X, Y)
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(X), s(Y)) → LE(X, Y)
s1 > LE1
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IFMIN(false, cons(N, cons(M, L))) → MIN(cons(M, L))
IFMIN(true, cons(N, cons(M, L))) → MIN(cons(N, L))
MIN(cons(N, cons(M, L))) → IFMIN(le(N, M), cons(N, cons(M, L)))
cons1 > MIN1 > IFMIN1 > false
cons1 > MIN1 > le1 > false
true > false
0 > false
s > le1 > false
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
EQ(s(X), s(Y)) → EQ(X, Y)
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ(s(X), s(Y)) → EQ(X, Y)
s1 > EQ1
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)
REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IFREPL(false, N, M, cons(K, L)) → REPLACE(N, M, L)
Used ordering: Combined order from the following AFS and order.
REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
false > cons1
0 > cons1
true > cons1
s1 > eq > cons1
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
REPLACE(N, M, cons(K, L)) → IFREPL(eq(N, K), N, M, cons(K, L))
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
IFSELSORT(true, cons(N, L)) → SELSORT(L)
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IFSELSORT(true, cons(N, L)) → SELSORT(L)
IFSELSORT(false, cons(N, L)) → SELSORT(replace(min(cons(N, L)), N, L))
SELSORT(cons(N, L)) → IFSELSORT(eq(N, min(cons(N, L))), cons(N, L))
true > cons1 > SELSORT1 > IFSELSORT1
true > cons1 > min1 > s1
true > cons1 > eq1
false > cons1 > SELSORT1 > IFSELSORT1
false > cons1 > min1 > s1
false > cons1 > eq1
nil > s1
ifmin > cons1 > SELSORT1 > IFSELSORT1
ifmin > cons1 > min1 > s1
ifmin > cons1 > eq1
replace(N, M, nil) → nil
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
eq(0, 0) → true
eq(0, s(Y)) → false
eq(s(X), 0) → false
eq(s(X), s(Y)) → eq(X, Y)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
min(cons(0, nil)) → 0
min(cons(s(N), nil)) → s(N)
min(cons(N, cons(M, L))) → ifmin(le(N, M), cons(N, cons(M, L)))
ifmin(true, cons(N, cons(M, L))) → min(cons(N, L))
ifmin(false, cons(N, cons(M, L))) → min(cons(M, L))
replace(N, M, nil) → nil
replace(N, M, cons(K, L)) → ifrepl(eq(N, K), N, M, cons(K, L))
ifrepl(true, N, M, cons(K, L)) → cons(M, L)
ifrepl(false, N, M, cons(K, L)) → cons(K, replace(N, M, L))
selsort(nil) → nil
selsort(cons(N, L)) → ifselsort(eq(N, min(cons(N, L))), cons(N, L))
ifselsort(true, cons(N, L)) → cons(N, selsort(L))
ifselsort(false, cons(N, L)) → cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L)))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(cons(0, nil))
min(cons(s(x0), nil))
min(cons(x0, cons(x1, x2)))
ifmin(true, cons(x0, cons(x1, x2)))
ifmin(false, cons(x0, cons(x1, x2)))
replace(x0, x1, nil)
replace(x0, x1, cons(x2, x3))
ifrepl(true, x0, x1, cons(x2, x3))
ifrepl(false, x0, x1, cons(x2, x3))
selsort(nil)
selsort(cons(x0, x1))
ifselsort(true, cons(x0, x1))
ifselsort(false, cons(x0, x1))